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Abstract
We introduce a new family of Hamiltonians with a deformed Kepler–Coulomb
potential dependent on an indexing parameter k. We show that this family
is superintegrable for all rational k and compute the classical trajectories and
quantum wavefunctions. We show that this system is related, via coupling
constant metamorphosis, to a family of superintegrable deformations of the
harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so,
we prove that all Hamiltonians with an oscillator term are related by coupling
constant metamorphosis to systems with a Kepler–Coulomb term, both on
Euclidean space. We also look at the effect of the transformation on the
integrals of the motion, the classical trajectories and the wavefunctions, and
give the transformed integrals explicitly for the classical system.

PACS numbers: 03.65.FD, 02.30.K, 11.30.Na

1. Introduction

The purpose of this communication is to introduce an infinite family of classical and quantum
systems with the Hamiltonian

V DC
k = −Q

r
+

αk2

4r2 cos2
(

k
2φ

) +
βk2

4r2 sin2
(

k
2φ

) , (1)

HDC
k = p2

1 + p2
2 + V DC

k , H DC
k = −� + V DC

k , (2)

where (r, φ) are the polar coordinates with 0 � φ � 2π
k

, �p is the linear momentum and �

is the Laplacian on two-dimensional Euclidean space. The superscript denotes that it is a
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deformed Coulomb potential and the subscript shows the dependence on k. This system was
given for k = 1 in [1] and for k = 2 in [2].

We shall show that the classical system is superintegrable for all rational values of k in that
it allows two independent integrals of motion, besides the Hamiltonian. Both are polynomial
in the momentum, one of second order and the other a higher order polynomial. We show that
all bounded classical trajectories of these systems are closed and the motion is periodic. For
the quantum system, we show that the Schrödinger equation is exactly solvable and the energy
levels are essentially the same as those of the Coulomb system. We will also show that these
systems are related to a family of superintegrable deformations of the harmonic oscillator via
coupling constant metamorphosis.

Superintegrable systems can be classified by the degree of the highest order integral
of the motion, excluding the Hamiltonian. The superintegrable systems of first order are
directly related to the Lie groups of point transformations while the superintegrable systems
of second order are characterized by separability in multiple coordinate systems. Both types
are considered to be well understood [3–8]. The classification of higher order superintegrable
systems remains an open problem and has been a subject of much recent activity [2, 9–17].

Most relevant to this communication is the recent discovery of a family of superintegrable
deformations of the harmonic oscillator [18] indexed by a parameter k, referred to by others
in subsequent articles as the TTW system. It can be defined both as a classical or quantum
Hamiltonian with the potential V = ω2ρ2 +αk2ρ−2 sec2 (kθ)+βk2ρ−2 csc2 (kθ). This system
has ignited much recent work on its conjectured superintegrability for certain values of k.

Specifically, for the integer k, it was conjectured to have an independent integral of the motion
of order 2k, in addition to the second-order integral defining separation of variables.

The original authors proved exact solvability for all k and superintegrability for k =
1, 2, 3, 4. Later they demonstrated the periodicity of bounded trajectories in the classical case
for rational k [19], supporting the conjecture. In recent papers, the classical superintegrability
was proven for rational k [20] and the quantum superintegrability was proven for odd k [21].
Most recently, a constructive proof of the superintegrability of the quantum system for rational
k was given in [22].

An important tool in the analysis of superintegrable systems is the coupling constant
metamorphosis, also referred to as the Stäckel transform which maps one Hamiltonian
to another [23, 24]. This transform is particularly useful in the study of integrable and
superintegrable systems because it carries an associated mapping of the integrals of the motion.
In this communication, we will see that the new Hamiltonian given above is Stäckel equivalent
to the TTW system and so the integrals of the motion, trajectories and wavefunctions will be
intimately linked.

In sections 2 and 3, we find the classical trajectories and then the quantum wavefunctions.
In section 4, we discuss the Stäckel transform and prove that systems with oscillator terms
in the potential are Stäckel equivalent to systems with Kepler–Coulomb terms and describe
the effect of the Stäckel transform on the trajectories or wavefunctions and on the integrals of
the motion. In section 5, we apply these theorems to determine higher order integrals of the
motion for the classical system.

2. The classical trajectories

We consider the classical trajectories of the system HDC
k given by (1) and (2) and prove that the

bounded trajectories are closed and the motion is periodic. We follow the procedure in [25]
and separate the action as S = S1(r) + S2(φ) − Et. The Hamilton–Jacobi equation separates
as
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Table 1. Parameter restrictions for bounded trajectories.

Restriction Effect Restriction Effect

D1 ≡ Q2 + 4AE > 0 ri real D2 ≡
(
A − k2

4 (β + α)
)2

− αβk4

4 > 0 ui real

Q > 0 0 < r2 A − k2

4 |β − α| > 0 u2 > 0
A > 0 0 < r1 and β > 0 u1 > 0

u1 < cos2
(

k

2 φ
)

< u2

E < 0 r1 < r < r2 α > 0 u2 < 1

−A = r2

(
∂S1

∂r

)2

− Qr − Er2 (3)

−A = −
((

∂S2

∂φ

)2

+
αk2

4 cos2
(

k
2φ

) +
βk2

4 sin2
(

k
2φ

)
)

, (4)

and for S1 and S2, we have

S1(r) =
∫

1

r

√
Er2 + Qr − A dr, S2(φ) =

∫ √
A − αk2

4 cos2
(

k
2φ

) − βk2

4 sin2
(

k
2φ

) .
The trajectories will then satisfy

∂S

∂E
= ∂S1

∂E
− t = δ1,

∂S

∂A
= ∂S1

∂A
+

∂S2

∂A
= δ2. (5)

It remains to integrate these equations under the condition that the motion be bounded,

0 � r1 � r � r2, Er2
i + Qri − A = 0, i = 1, 2. (6)

Also, we have the requirement

0 � u1 � cos2

(
k

2
φ

)
� u2 � 1, −Au2

i +

(
A − β

(
k

2

)2

+ α

(
k

2

)2
)

ui − α

(
k

2

)2

= 0.

(7)

These conditions give restrictions on the choices of parameters. We summarize these in
table 1.

Under the restrictions given in the table, the solutions for (5) are

0 = −2Er − Q√
D1

+ sin

(
4(−E)3/2

Q
(t + δ1) +

2
√−E

a

√
Er2 + Qr − A

)
, (8)

0 = −δ2 +
1

2
√

A
arcsin

(
2A − Qr

r
√

D1

)
+

1

2k
√

A
arcsin

(
2A sin2

(
k
2φ

) − A + k2

4 (β − α)√
D2

)
(9)

and hence r has the period of Qπ

2(−E)3/2 in t. These trajectories are also periodic in φ for rational
k = c/d with integers c, d. Rewriting (9),

0 = −2
√

Acδ2 +
c + d

2
π − c arccos

(
2A − Qr

r
√

D1

)

− d arccos

(
2A sin2

(
k
2φ

) − A + k2

4 (β − α)√
D2

)
(10)
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and using the Chebyshev polynomials defined as

Tn(x) = cos(n arccos(x)), Un(x) = sin((n + 1) arccos(x))

sin arccos x
(11)

we obtain

0 = −Tc

(
2A − Qr

r
√

D1

)
+ cos(C)Td

(
2A sin2

(
k
2φ

) − A + k2

4 (β − α)√
D2

)

+ sin(C)Ud−1

(
2A sin2

(
k
2φ

) − A + k2

4 (β − α)√
D2

)

×

√√√√1 −
(

2A sin2
(

k
2φ

) − A + k2

4 (β − α)√
D2

)2

, (12)

where C = (−2
√

Apδ2 + (c + d)/2π). Under the given restrictions on the parameters, the
implicit function for r = r(φ) given by (12) is well defined and periodic, with period τ = 2

k
π

in φ.

We note that these trajectories and their determining equations bear a striking resemblance
to those obtained for the TTW system [19]. In fact, the implicit function determining r = r(φ)

is identical under a change of variables and parameters. We shall see in a later section why
this is so.

3. Eigenfunctions for the quantum system

In this section, we solve for the wavefunctions of the quantum system H DC
k given by (1) and

(2) and show that the system is exactly solvable. That is, its energy values can be calculated
algebraically and the eigenfunctions can be realized as polynomials modulo a gauge function
[26, 27].

We assume a solution 
 = R(r)S(φ) and separate the equation H DC
k 
 = E
 as

(
−∂2

r − 1

r
∂r +

A

r2
− Q

r
− E

)
R(r) = 0. (13)

(
−∂2

φ +
αk2

4 cos2
(

kφ

2

) +
βk2

4 sin2
(

kφ

2

) − A

)
S(φ) = 0. (14)

We look for the solutions which can be written as gauge transformations of a polynomial,
a characteristic of exact solvability. In order to obtain such a form of solutions, we require
that α and β be greater than −1/4 and rewrite them as α = a(a − 1), β = b(b − 1).

If we take a gauge transformation with the gauge G1 = r
√

A e2r
√−E , the transformed

radial equation (13) will have polynomial solutions if we restrict to the quantized values
of the energy E = −Q2(2n + 1 + 2

√
A)−2. If we make a gauge transformation with

G2 = cos
(

k
2φ

)a
sin

(
k
2φ

)b
, then the transformed angular equation (14) will have polynomial

solutions if we restrict to quantized values of the parameter A = k2(2m + a + b)2/4.

A set of solutions for the Schrödinger equation is given by the Jacobi polynomial multiplied
by Laguerre polynomials


 = G1G2L
2
√

A
n (2r

√−E)P
a− 1

2 ,b− 1
2

m (−cos(kφ)) (15)

4



J. Phys. A: Math. Theor. 43 (2010) 222001 Fast Track Communication

with energy

E = −Q2

(2(n + km) + 1 + ka + kb)2 . (16)

For a given rational k = c/d, the energy levels are indexed by an integer N = dn + cm and
their degeneracy is D = [dN/c] + 1. This coincides with the degeneracy of an anisotropic
oscillator with the frequency ratio c/d.

These wavefunctions are in agreement with the solutions for the k = 1 case previously
analyzed [1]. The quantum system is indeed exactly solvable and we recover the requirements
A > 0, E < 0 with a slight relaxation in the restrictions on the parameters α and β which are
both required to be greater than −1/4 instead of positive as in the classical case. Here we see
again the relation between these eigenfunctions and those of the TTW system which differ by
the same change of variables and parameters as the classical trajectories. In the next section
we shall see why this is the case as we prove some theorems which are directly relevant to our
systems.

4. Coupling constant metamorphosis of Hamiltonians separable in polar coordinates
with a harmonic oscillator term in the potential

Consider a classical Hamiltonian H = Ĥ − ẼU, where Ĥ includes the kinetic energy and
part of the potential independent of the coupling constant (−Ẽ). We can then write the
Hamilton–Jacobi equation H = E and solve for Ẽ to obtain a new Hamilton–Jacobi equation
H̃ ≡ U−1(Ĥ − E) = Ẽ. For H and H̃ the roles of coupling constant and the energy are
interchanged. The quantum version follows by direct analogy. Such a transform is called
coupling constant metamorphosis or the Stäckel transform. A remarkable characteristic of
coupling constant metamorphosis is that there is an associated mapping of the integrals of the
motion to the new system. Such mapping was given first for classical integrable Hamiltonians
and later extended to quantum systems with second-order integrals [23, 24]. More recently,
the quantum transform was extended to higher order constants of the motion [28].

The theorems which define the transforms are given below with their proofs.

Theorem 1. Given a classical Hamiltonian H = Ĥ − ẼU, where Ĥ is independent of the
arbitrary parameter Ẽ, with an integral of the motion L(Ẽ). If we define the Stäckel transform
of H and L as H̃ ≡ U−1(Ĥ − E) and L̃ ≡ L(H̃ ), respectively, then L̃ is an integral of the
motion for H̃.

To prove this, we use an identity for Poisson brackets given by

{F(pi, qj , f (pi, qj )),G} = {F(pi, qj , τ ),G}|τ=f (pi ,qj )

+
∂F (pi, qj , τ )

∂τ

∣∣∣∣
τ=f (pi ,qj )

{f (pi, qj ),G},
where pi and qj are the conjugate position and momenta, respectively, and τ is a parameter.
With this, we compute

{H̃, L̃} =
{

1

U
(H + ẼU − E),L

∣∣∣∣
Ẽ=H̃

}

=
{

1

U
(H + ẼU − E),L

} ∣∣∣∣
Ẽ=H̃

+ ∂ẼL(Ẽ)|Ẽ=H̃{H̃, H̃}

= −{U,L} 1

U 2
(H − E)

∣∣∣∣
Ẽ=H̃

,

and since H|Ẽ=H̃ = E, we see that {H̃, L̃} = 0 and we have proved the theorem.

5
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There is an associated theorem for quantum systems though we must make a further
assumption about the form of the integral of motion in order to get a well-defined integral.

Theorem 2. Given a quantum Hamiltonian H = Ĥ − ẼU, where Ĥ is independent of

the arbitrary parameter Ẽ, with an integral of the motion L = ∑[ n
2 ]

j=0 KN−2j Ẽ
j , where Ki

have degree i as differential operators. If we define the Stäckel transform of H and L as

H̃ = U−1(Ĥ − E) and L̃ = ∑[ n
2 ]

j=0 KN−2j H̃
j , respectively, then [H̃ , L̃] = 0.

Furthermore, if H is self-adjoint and L is self- or skew-adjoint, depending on the parity of
N, with respect to dμ, then H̃ will be self-adjoint and L̃ will have the same parity as L with
respect to the metric Udμ.

The proof of this theorem uses the fact that the Ki’s do not depend on Ẽ to show that for
all integer j, we have

[L,H ] =
⎡
⎣ [ N

2 ]∑
j=0

KN−2j Ẽ
j , Ĥ + ẼU

⎤
⎦ = 0 ⇐⇒ [KN−2j , Ĥ ] + [KN−2j+2, U ] = 0, (17)

and∫
Lfg dμ = (−1)N

∫
f Lg dμ ⇐⇒

∫
KN−2j fg dμ = (−1)N

∫
f KN−2j g dμ, (18)

where we have extended the Ki to all integers by setting Ki = 0 if i < 0 or i > N. We then
use [KN−2j , H̃ ] = U−1[KN−2j , Ĥ ] − U−1[KN−2j , U ]H̃ to compute

[L̃, H̃ ] =
∑

j

([KN−2j , Ĥ ] + [KN−2j+2, U ])H̃ j = 0, (19)

where the last equality follows by (17). Similarly, (18) implies∫ ∑
j

Kn−2j H̃
jfgU dμ =

∑
j

(−1)N
∫

f (H̃ jU−1KN−2jUg)U dμ (20)

while (17) gives
∑

j H̃ jU−1KN−2jU = ∑
j KN−2j H̃

j . Hence, the equality
∫

L̃fgUdμ =
(−1)N

∫
f L̃gUdμ holds and we have proved the theorem.

It is important to note that the Stäckel transform usually maps one system to another on
a different ambient manifold since there is a conformal transform of the metric. However,
for certain forms of U, the system is still on Euclidean space, though with a different choice
of variables; this will be the case for U = ρ2. If we assume further that the Hamiltonian is
separable in polar coordinates, we have the following theorems.

Theorem 3. Given a classical Hamiltonian H in four-dimensional phase space separable
in polar coordinates and with a term in the potential corresponding to an isotropic oscillator,
i.e. of the form

H(ρ, θ) = p2
ρ +

1

ρ2
p2

θ − Ẽρ2 + f1(ρ) +
1

ρ2
f2(θ), (21)

where f1(r) and f2(θ) are independent of Ẽ. The Stäckel transform ofH is again on Euclidean
space and given by

H̃(r, φ) = p2
r +

1

r2
p2

φ − E

2r
+

1

2r
f1(

√
2r) +

1

4r2
f2

(
φ

2

)
. (22)
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This theorem can be directly verified by taking the Stäckel transform of H as given in
theorem 1:

H̃(ρ, θ) = 1

ρ2

(
p2

ρ +
1

ρ2
p2

θ + f1(ρ) +
1

ρ2
f2(θ) − E

)
,

and making the change of variables r = ρ2/2, φ = 2θ. We have the following immediate
result.

Corollary 1. The Hamiltonian given by (22) is separable in polar coordinates with an
associated integral of the motion L1 = p2

φ + 1
4f2

(
φ

2

)
. Furthermore, if H has an additional

integral of the motion, then so will H̃.

The first assertion can be observed from the Hamiltonian and both assertions are results
of theorem 1. There is also a constructive relation between the trajectories of the two systems.

Theorem 4. If H(ρ, θ) as given in (21) has trajectories (ρ(t), θ(t)) which satisfy
δ1 = F1(ρ) − t, δ2 = F2(ρ, θ) then trajectories for H̃(r, φ) will satisfy

δ1 = d

dẼ

∫
F1(

√
2r) dE − t, δ2 = F2

(√
2r,

φ

2

)
. (23)

We prove this by following the same procedure as in the previous section to solve
for the trajectories. We separate the action as S = S1(ρ) + S2(θ) − Et for H and
S̃ = S̃1(

√
2r) + S̃2

(
φ

2

) − Ẽt for H̃. By construction, the Hamilton–Jacobi equations are
identical, the only difference being that the energy for the system H is E while Ẽ is the energy
of the system H̃. Thus, we have S1(ρ) = S̃1(ρ) and S2(θ) = S̃2(θ). Therefore, the trajectories
for H̃ must satisfy(

∂S1

∂Ẽ

)
− t = δ1,

∂S1

∂A
+

∂S2

∂A
= δ2. (24)

Hence, if the trajectories for H, (ρ(t), θ(t)), satisfy δ1 = F1(ρ) − t, δ2 = F2(ρ, θ), then

F1(ρ) = ∂S1

∂E
, F2(ρ, θ) = ∂S1

∂A
+

∂S2

∂A

and so the trajectories for H̃, (r(t), φ(t)), must satisfy

δ1 = ∂

∂Ẽ

∫
F1(

√
2r) dE − t, δ2 = F2

(√
2r,

φ

2

)
.

We have a similar result for the quantum system.

Theorem 5. Given a quantum Hamiltonian H(ρ, θ) in two dimensions separable in polar
coordinates and with a term in the potential corresponding to an isotropic oscillator, i.e. of
the form

H(ρ, θ) = − 1

ρ
∂ρ(ρ∂ρ) − 1

ρ2
∂2
θ − Ẽρ2 + f1(ρ) +

1

ρ2
f2(θ), (25)

where f1(ρ) and f2(θ) are independent of Ẽ. The Stäckel transform of H(ρ, θ) is again on
Euclidean space and given by

H̃ (r, φ) = −1

r
∂r(r∂r) − 1

r2
∂2
φ − E

2r
+

1

2r
f1(

√
2r) +

1

4r2
f2

(
φ

2

)
. (26)

7
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This theorem can be directly verified by taking the Stäckel transform of H as given in
theorem 2:

H̃ (ρ, θ) = 1

ρ2

(
− 1

ρ
∂ρ(ρ∂ρ) − 1

ρ2
∂2
θ − E + f1(ρ) +

1

ρ2
f2(θ)

)

and making a change of variables of r = ρ2/2, φ = 2θ. We have the following immediate
result.

Corollary 2. The Hamiltonian given by (26) is separable in polar coordinates with an
associated integral of the motion L1 = −∂2

φ + 1
4f2

(
φ

2

)
. Furthermore, if H has an additional

integral of the motion of the form given in theorem 2, then so will H̃ .

In addition, the solutions to the Schrödinger equation for H are also solutions to the
Schrödinger equation for H̃ since, by construction, (H̃ (ρ, θ) − Ẽ) = 1

ρ2 (H(ρ, θ) − E).

Theorem 6. If 
(ρ, θ) is a solution to H(ρ, θ)
(ρ, θ) = E
(ρ, θ) then 

(√

2r,
φ

2

)
will

be a solution to H̃ (r, φ)

(√

2r,
φ

2

) = Ẽ

(√

2r,
φ

2

)
.

If we consider the case where Ẽ = −ω2, f1(r) = 0 and f2(θ) = αk2ρ−2 sec2(kθ) +
βk2ρ−2 csc2(kθ), then the original Hamiltonians H and H correspond to the TTW system,
HTTW

k and H TTW
k , respectively [18]. Furthermore, if we take E = Q/2, then the transformed

Hamiltonians H̃TTW
k and H̃ TTW

k will coincide with HDC
k and H DC

k , respectively, so we can
use the superintegrability of the TTW system to prove the superintegrability of the deformed
Coulomb system.

5. The higher order integral of the motion

We can directly apply the above theorems to the TTW system to obtain an additional integral
of the motion for HDC

k by taking the Stäckel transform of the higher order constant of the
motion of the TTW system. The existence of constants of the motion for the classical TTW
Hamiltonian were recently proven for all rational k [20]. We would like to see the mapping of
these integrals of the motion under the Stäckel transform. In particular, we want to verify that
they will remain polynomial in the momenta. To do this, we derive an explicit expression for
the integral and show that these are the polynomials in the parameter ω2.

We begin by finding an explicit expression for the constants of motion. First, we redefine
ρ = eR in order to express the Hamiltonian and the integral of the motion as

HTTW
k = e−2R

(
p2

R + ω2 e4R + L1
)
, (27)

L1 = p2
θ +

αk2

cos2(kθ)
+

βk2

sin2(kθ)
. (28)

The auxiliary functions M and N given in [20] can be written in a modified form as

M = 1

4
√
L1

arccos

⎛
⎝ Bx√

B2
y + B2

x

⎞
⎠ , N = 1

4k
√
L1

arccos

⎛
⎝ Ax√

A2
x + A2

y

⎞
⎠

Ay = L1 cos(2kθ) − αk2 + βk2, Ax =
√
L1 sin(2kθ)pθ ,

By = 2L1 e−2R − HTTW
k , Bx = 2

√
L1 e−2RpR.

8
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Note that, because the quantities

A2
x + A2

y = (L1 − (α + β)k2)2 − 4k4αβ,

B2
x + B2

y = (
HTTW

k

)2 − 4ω2L1

(29)

depend only on HTTW
k , L1 and parameters, we can always multiply any integral of the motion

by a function of these and it will still Poisson commute with HTTW
k .

Since the functions M and N satisfy
{
M,HTTW

k

} = {
N ,HTTW

k

} = e−2R,M − N will
be an integral of the motion, though not polynomial in the momenta. However, for rational
k = c/d with integers c, d, the integral can be put into a form so that it is polynomial in the
momenta. One such integral is

L(sin)
2 ≡ (√

B2
x + B2

y

)c(√
A2

x + A2
y

)d sin(4c
√
L1(M − N ))

√
L1

δc+d−1
, (30)

where δi is 0 if i is even and 1 when i is odd. To show that this integral is polynomial in the
momenta, we use the identities for Chebyshev polynomials (11) to rewrite L2 as

L(sin)
2 = (√

B2
x + B2

y

)c(√
A2

x + A2
y

)d ⎡⎣ By√
B2

x + B2
y

Uc−1

⎛
⎝ Bx√

B2
x + B2

y

⎞
⎠ Td

⎛
⎝ Ax√

A2
x + A2

y

⎞
⎠

− Ay√
A2

x + A2
y

Tc

⎛
⎝ Bx√

B2
x + B2

y

⎞
⎠Ud−1

⎛
⎝ Ax√

A2
x + A2

y

⎞
⎠
⎤
⎦ 1

√
L1

δc+d−1
, (31)

which can be expanded as

L(sin)
2 = 1

√
L1

δc+d−1

⎡
⎣
⎛
⎝[ c−1

2 ]∑
m=0

(
c

2m + 1

)
(−1)mBc−2m−1

x B2m+1
y

⎞
⎠

×
⎛
⎝ [ d

2 ]∑
m=0

(
d

2m

)
(−1)mAd−2m

x A2m
y

⎞
⎠

−
⎛
⎝[ d−1

2 ]∑
m=0

(
d

2m + 1

)
(−1)mAd−2m−1

x A2m+1
y

⎞
⎠

⎛
⎝ [ c

2 ]∑
m=0

(
c

2m

)
(−1)mBc−2m

x B2m
y

⎞
⎠
⎤
⎦ .

(32)

This is polynomial in the momenta because of the definitions of the A’s and B’s and because
of the parity of the Chebyshev polynomials.

As demonstrated in the original paper, there is also an integral of the motion obtained by
taking cosine instead. It can be written as

L(cos)
2 ≡ (√

B2
x + B2

y

)c(√
A2

x + A2
y

)d cos(4c
√
L1(M − N ))

√
L1

δc+d
. (33)

Because of the power of
√
L1 in the denominator, the degrees of L(sin)

2 and L(cos)
2 will differ

by 1, with the lowest degree being 2(c + d) − 1. In the case of the integer k, we do not get
a symmetry operator of degree 2k but instead one of degree at least 2k + 1. In this case, the
operator of lowest degree, namely 2k + 1, will be L(cos)

2 for even k and L(sin)
2 for odd k. Thus,

while it has been explicitly proven that the systems are classically superintegrable for rational
values of k, there is still no proof that the integrals of the motion can be written as polynomials

9
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in the momenta of degree 2k for the integer k. We conjecture that there is such an integral
L3 and it can be related to the integrals given above by L(μ)

2 = {L3,L1}, for μ = sin, cos
depending on the parity of k. We have verified the conjecture for k = 1, 2.

From the above equations, we see explicitly that the integrals of motion are polynomial in
the parameter ω2 and hence coupling constant metamorphosis will map them to the integrals of
the motion for H̃TTW

k which are still polynomial in the momenta. To determine such integrals
we must replace ω2 = −H̃TTW

k and perform the requisite change of variables. Hence, the
constants of the motion for the Hamiltonian H̃TTW

k will be

L̃2
(μ)

(r, φ) = L(μ)

2 (
√

2r, φ/2)|ω2=−H̃TTW
k

, μ = sin, cos. (34)

Finally, HDC
k is related to H̃TTW

k by the parameter change E = Q/2 and so the integrals will
need to undergo the same transform. The existence of these additional integrals of motion
proves that the classical system HDC

k is superintegrable.

6. Conclusion

In this communication, we have presented a new infinite family of superintegrable systems
associated with a deformation of the Coulomb potential. We have shown that the bounded
trajectories for the classical system are periodic and that the quantum system is exactly solvable.
We have also shown that deformed Coulomb system is Stäckel equivalent to the TTW system
and used the classical Stäckel transform to show that the new Hamiltonian is classically
superintegrable. We mention that Bertrand’s theorem [25, 29] (valid in n dimensions) tells
us that the only spherically symmetric potentials for which all classical bounded trajectories
are closed are the harmonic oscillator and the Coulomb–Kepler potential. The potentials
αr−1 and αr2 are also the only two spherically symmetric potentials which are maximally
superintegrable. We now see that at least for n = 2 both of these systems can be deformed
into infinite families of superintegrable systems by adding a symmetry breaking term as in (1)
and that the two families are related via coupling constant metamorphosis.

As a tool in our analysis, we have proven some general theorems about coupling constant
metamorphosis and its action on a class of Hamiltonians, of which the TTW is an example.
Though the Hamiltonians HDC

k and H DC
k are certainly novel systems, there is a direct relation

induced by coupling constant metamorphosis between not only the integrals of the motion but
also the trajectories and wavefunctions of the two systems. These characteristics underscore
the value of the Stäckel transform as a classifying tool. A subject of immediate interest is
to try to determine which functions U give Stäckel equivalent systems on the same manifold
and also if we can generalize these results to higher dimensions. For example, recently a
three-dimensional generalization of this system was shown to be classically superintegrable
for rational k [30].

Finally, it remains a further subject of research to find the closed form solutions of the
second integrals of motion in the quantum case and prove that they can be chosen in a form
that will admit a Stäckel transform. This is the case for all explicitly constructed examples
given in [18, 22] and in the general odd k case given in [21].
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